GENERAL

At present, in cable industry, Fire Retardant, Low Smoke Halogen Free (LSZH), Low Smoke Fume (LSF) and Fire Resistant cables are all described as Fire survival Cables.

· Flame Retardant

Fire retardant cables are designed for use in fire situations where the spread of flames along a cable route needs to be retarded. Due to relative low cost, fire retardant cables are widely used as fire survival cables. No matter the cables are installed in single wire or in bundles, during a fire, the flame spread will be retarded and the fire will be confined to a small area, thus reducing the fire hazard due to fire propagation.

· Low Smoke & Halogen Free & Fire Retardant (LSZH)

LSZH cables are not only characterized by the fire retardant performance but also by the halogen free properties, thus offering low corrosivity and toxicity. During a fire, the LSZH cables will emit less smoke and acid gases which may damage the human being and expensive equipment. Compared with normal PVC cables, LSZH cables outperform by their fire retardancy, low corrosivity and low smoke emission properties, however, normal PVC cables have better mechanical and electrical properties.

· Low Smoke Fume (LSF)

The low halogen content and low corrosivity of low smoke fume cables lies somewhat in between that of fire retardant cables and LSZH cables. LSF cables also contain halogen but the content is much less than that of PVC cables. LSF cables are designed to reduce the spread of fire, toxic gases and smoke during fire. The LSF cables are usually manufactured from flame retardant PVC blended with HCl additive and smoke absorbent. These materials help improve the fire performance of the LSF cables.

· Fire Resistant (FR)

Fire resistant cables are designed to maintain circuit integrity of those vital emergency services during the fire. The individual conductors are wrapped with a layer of fire resisting mica/glass tape which prevents phase to phase and phase to earth contact even after the insulation has been burnt away. The fire resistant cables exhibit same performance even under fire with water spray or mechanical shock situation.

· Fire Performance Class

The main concerns for the cables in their fire survival properties are their flame spread, smoke characterization and gas toxicity. In American fire Standard, the concern lies more on the and it differs from the European Standard which concerns all these aspects. In USA, it is believed that the fire hazard is mainly due to CO toxic gas emitted and the heat release during the conversion of CO to CO2 during the fire. Therefore, to control the heat release is the most important concern for reducing the fire hazard.

However, in European countries, halogen content, the corrosivity of the gases, the smoke density and the toxicity of the gas are equally important factors affecting the safety and survival of human during a fire.

IEC STANDARDS FOR FLAME RETARDANCY

The European Electrical Committee categorizes the fire performance of the cables into three classes, namely IEC 60332-1, IEC 60332-2, IEC 60332-3C

IEC 60332-1 and IEC 60332-2 are used to assess the flame propagation characteristics of a single wire.

IEC 60332-3C is used to assess the flame propagation characteristics of bundled cables.
IEC 60332-1 / 2 (Flame Test On Single Vertical Insulated Wires / Cables)

This test details a method of test for the assessment of the flame propagation characteristics of a single wire or cable. In this test, a 60cm cable sample is fixed vertically inside a metallic box and a 17.5 cm long flame is applied at 45˚C from a gas burner placed at 10cm above the lower part of the sample for a duration dependent on the weight of the specimen whereas in case of IEC 60332-2 duration is max. 20 sec.

The specimen is deemed to have passed this test, if after burning has ceased, the charred or affected position does not reach to upper end of the sample. The test method is not suitable for the testing of some small wires due to the melting of the conductors during the time of application of the flame.

IEC 60332-3 (Flame Test On Bunched Wires / Cables)

IEC 60332-3C describes a method of type approval testing to define the ability of bunched cables to resist fire propagation. In this test, a cable specimen, consisting of number of 3.5m length of cables are fixed to a vertical ladder tray where they are applied with a flame from a gas burner in 90˚ angle for a specified times under controlled air flow. Four categories (A, B, C & D) are defined and distinguished by test duration and the volume of non metallic material of the sample under test. The cable specimen is deemed to have met the requirements of the Standard if, after burning has ceased, the extent of charred or affected portion does not reach a height exceeding 2.5m above the bottom edge of the burner.

STANDARDS FOR FIRE RESISTANCE

IEC 60331-25 Fire Resistance Test for single Cable specimen

A cable sample is placed over a gas burner in horizontal direction and 60 cm in distance and connected to an electrical supply at its rated voltage. Fire is applied for a period of 3 hours. The temperature on the cable is between 750˚C and 800˚C. After 3 hours, the fire and the power is switched off. 12 hours later, the cable sample is reenergized and must maintain its circuit integrity.

STANDARDS FOR HALOGEN & SMOKE EMISSION, CORROSIVITY AND TOXICITY

IEC 60754-1 (Emission of Halogen)

This specifies a test for determination of the halogen acid gas other than the hydrofluoric acid evolved during combustion of compound based on halogenated polymers and compounds containing halogenated additives taken from cable constructions. Halogen includes Florine, Chlorine, Bromine, Iodine and Astatine. All these elements are toxic by their nature. In this test, when the burner is heated to 800˚C, 1g sample is placed inside and the HCL is absorbed into water inside the chamber fed with air flow. The water is then tested with is acidity. If the hydrochloric acid yield is less than 5 mg/g, the cable specimen is categorized as LSZH. If the hydrochloric acid yield lies between 5 mg/g to 15mg/g, the cable specimen is categorized as LSF. IEC60754-1 cannot be used for measuring the exact HCL yield if the yield is less than 5mg/g. This test cannot determine if the cable is 100% halogen free or not. To determine if the cable specimen is 100% halogen free or not, IEC60754-2 has to be employed.

IEC 60754-2 (Corrosivity)

This test specifies a method for the determination of degree of acidity of gases evolved during combustion of the cable specimen by measuring its pH and conductivity. The specimen is deemed to pass this test if the pH value is not less than 4.3 when related to 1 litre of water and conductivity is less than 10us/min. When the HCL yield lies between 2mg/g and 5mg/g, a cable specimen can pass IEC 60754-1 but its pH value will likely be less than 4.3 and therefore cannot pass the IEC 60754-2 test.

IEC 61034-1 (Emission of Smoke)

This specifies a test for determination of smoke density. The 3 metre cube test measures the generation of smoke from electric cables during fire. A light beam emitted from a window is projected across the enclosure to a photo cell connected to a recorder at the opposite window. The recorder is adjusted to register from 0% for complete obscuration to 100% luminous transmissions. A 1 metre cable sample is placed in the centre of the enclosure and is applied with a fire. The minimum light transmission is recorded. The result is expressed as percentage of light transmitted. The specimen is deemed to pass this test (IEC81034-1 & 2) if the value is greater than 60%. The higher the light transmittance, the less smoke emitted during a fire.
ISO4589-2 (Oxygen Index LOI)

This is a test for assessing the oxygen index of the material in accordance with the test method specified in ASTM D2863-95 (Measuring the minimum oxygen concentration to support candle-like combustion of plastics). At room temperature when the oxygen content in the air exceeds the oxygen index, the material will burn by itself automatically. The higher the oxygen index, the more retardant the cable will be. For example, if the oxygen index of a material is 21%, it means that the material will burn by itself even at room temperature because at room temperature the normal oxygen content is 21%. In general, the oxygen index of a LSZH cables ranges from 33% to 42%.